
Optical vortices with large orbital
momentum: generation and interference

Anatoliy A. Savchenkov1, Andrey B. Matsko1, Ivan Grudinin1,
Ekaterina A. Savchenkova2, Dmitry Strekalov1, and Lute Maleki1

1 Jet Propulsion Laboratory, California Institute of Technology, MS 298-100,
4800 Oak Grove Drive, Pasadena, CA 91109-8099

2 Moscow Lomonosov State University, Department of Physics,
Vorob’evy Gory, Moscow, 119992, Russia

Andrey.Matsko@jpl.nasa.gov

Abstract: We demonstrate a method for generation of beams of light
with large angular momenta. The method utilizes whispering gallery mode
resonators that transform a plane electromagnetic wave into high order
Bessel beams. Interference pattern among the beams as well as shadow
pictures induced by the beams are observed and studied.
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1. Introduction

Optical vortices or light beams with nonzero angular momenta are interesting not only because
of their underlying physics, but also because of their potential applications. Generation of such
vortices and the study of their properties has recently attracted considerable attention. The
beams have been realized with both passive and active schemes (see [1, 2, 3, 4] for review).
Nonetheless, generation of beams with orbital angular momentum exceeding 10 4h̄ per photon,

#67784 - $15.00 USD Received 6 February 2006; revised 28 March 2006; accepted 29 March 2006

(C) 2006 OSA 3 April 2006 / Vol. 14,  No. 7 / OPTICS EXPRESS  2888

mailto:Andrey.Matsko@jpl.nasa.gov


though in principle possible, [5], is not easily achievable experimentally. To our knowledge, the
highest orbital angular momenta of photons observed thus far are approximately 25 h̄ [5] and
30h̄ [6]. Beams with angular momenta up to 300 h̄ were recently demonstrated [7]. In this paper
we discuss another method for the generation of photons with large orbital momentum.

We report on a proof of principle experiment validating the application of a low contrast
whispering gallery mode (WGM) resonator that supports modes with high angular momenta
for the generation of high-order Bessel beams [8]. By ”low contrast” we mean a new design
whereby the resonator is a part of the waveguide, but has a slightly different radius than the
waveguide. The resonator can be made by cutting and polishing a bump or dip pattern on the
waveguide surface. Such a resonator has an important distinction from the ordinary WGM
resonators since its modes decay primarily into Bessel modes of the waveguide, and not to the
outside environment. By changing the resonator shape and the radius of the waveguide it is
possible to change the resonator loading and to allow light propagation from the resonator to
the waveguide.

Fig. 1. Scheme of the experiment.

The feasibility of the applications of the optical waves possessing angular momenta directly
depends on their propagation distance in the free space. A high order running Bessel wave that
penetrates into a cylindrical waveguide from the resonator through evanescent field coupling
cannot leave the waveguide. It runs until the end of the waveguide and reflects, because of the
total internal reflection. It is possible to manipulate the wave inside the waveguide. However, the
complete confinement of the waves in the waveguide reduces the spectrum of their applications.
We used a tapered waveguide to release the Bessel beam into free space.

We have been able to generate Bessel beams with orders exceeding a thousand, and have
studied interference of multiple beams with different angular momenta as well as pictures of
shadow of an object placed in front of them. The shadow has properties that arise from the far
field interference of the beams of different orders at different points at the exit of the waveguide.
This interference experiment allowed us to estimate the propagation distance of the optical vor-
tices. The distance drastically decreases with an increase of the value of the angular momentum.
We explain the results theoretically and discuss the possibility of increasing the propagation dis-
tance. The experiments with shadows have shown that a shadow of a straight rod illuminated
with a Bessel beam is not a straight line. This result is explained theoretically in the frame of
geometrical, not wave, optics.

2. Experiment

We fabricated several low contrast fused silica WGM resonators being integral parts of tapered
waveguides (Fig. 1). In one experiment, a segment of a fused silica multimode fiber rod is
cleaved and the cleavage plane is polished. The diameter of the fiber is 1 mm. The other end of
the rod is stretched into a conical shape in a hydrogen burner. This end is fused to form a WGM
resonator having about 300 μm in diameter as an integral part of a cone. This cone starts at the
WGM at diameter of about 250-280 μm and expands to 1 mm in diameter over 1 cm distance
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Fig. 2. A low contrast whispering gallery mode resonator for a Bessel beam generation. The
resonator is created by the local increase of the waveguide radius. A tapered waveguide is
used to generate a Bessel beam in the free space. Increasing the waveguide radius changes
the wave vector of the light, guaranteeing escape of the light from the waveguide into free
space. (A) A low contrast fused silica WGM resonator attached to the tapered waveguide.
(B) Coupling light into the WGMs of the resonator using cleaved fiber. (C) Tapered fiber
used to release generated Bessel beam into free space.

(Fig. 2). Another resonator we built has a 500 μm diameter, and the taper diameter changes
from 450 μm to 3 mm over a 3 cm distance.

Fig. 3. (A) Far field interference pattern of multiple copropagating Bessel beams. (B) Far
field shadow of a 250 μm-thick needle placed to the beam emerging the fiber taper.

The resonators were optically pumped with 650 nm light using an angle polished fiber cou-
pler. We excited a family of WGMs that interacted with the modes of the tapered fiber. The
fiber coupler is shown in (Fig. 2(B)). It is easy to see the glow on the resonator surface resulting
from the scattering of the light in the WGMs, which abruptly disappears in the vicinity of the
coupling point between the resonator and the tapered fiber. This glow shows the geometrical
localization of light in the resonator.
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As the WGMs of the resonator decay into the fiber, light propagates and exits the fiber into
the free space as truncated Bessel beams. Because the ratio of the taper entrance over the exit
diameters was small (rexit/rentrance = 6 or less) and the mode order was high (> 103), the propa-
gation distance of Bessel beams in free space did not exceed ten millimeters. The beams spread
out creating peculiar interference shapes in the far field region (Fig. 3(A)). This observation has
a certain similarity with the interference pattern of zero and first order Laguerre-Gauss beams
presented in [9]. In what follows it is shown that in our case the interference occurs between
multiple high-order truncated Bessel beams.

Aside from the interference we have observed peculiar shapes of the shadow of a straight,
thin, opaque object parallel to the waveguide surface that crosses the symmetry axis of the
beam possessing large angular momentum (Fig. 3(B)) (also see Fig. 9 for more details of the
experiment). To generate the shadow we used a 250 μm needle as the object. The shadow is
orthogonal to the object in the center of the interference pattern, and is parallel, but displaced,
far from the center. The shape of the shadow depends on the distance of the object from the
surface of the taper. The closer the wire is, the longer is the region of the orthogonal shadow.
We have repeated the same experiment using 532 nm laser and a 25 μm thick piece of a tungsten
wire, and obtained similar result. The dynamics of the behavior of the shadow with the distance
change is demonstrated in Fig. 4. In what follows we explain the result of the experiment

Fig. 4. (0.7 Mb) Movie. A shadow of a straight wire illuminated with the light possess-
ing large angular momentum. The distance between the wire and the waveguide surface
changes from 12.5 mm to zero. Two mixed interference patterns come from two polariza-
tions of the light.

theoretically.

3. Theory

3.1. Interference

The interference pattern (Fig. 3) could be explained if we consider the interference of multiple
radially truncated high order Bessel waves with nearly the same diameter but different angular
momenta. Light from an angle polished fiber coupler (Fig. 2(B)) excites many modes of the
resonator with different quantum numbers and the same frequency. Those WGMs excite the
Bessel waves in the taper. The waves have different propagation constants along the Z axis
and, hence, different dispersion. The initially narrow angular distribution of light in the taper
broadens up with the propagation distance.
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Fig. 5. To the explanation of the influence of the dispersion of the Bessel waves on az-
imuthal localization of light. Let us assume that the fiber coupler excites two Bessel waves
shown with red and green curves in a cylindrical waveguide. The initially localized waves
become azimuthally delocalized during the propagation. They cross the plane with coordi-
nate Z at different points described by different azimuthal angles.

Let us consider a fiber coupler that excites Bessel waves with various angular moments in a
cylindrical waveguide (Fig. 5). For the sake of simplicity we assume that the waveguide radius
does not change and excitation of the modes is possible without a WGM resonator. The light
leaving the fiber coupler is azimuthally localized. The localization disappears with distance
because of the spatial dispersion of the excited modes. Results of an exact numerical simulation
of the thought experiment (Fig. 5) are shown in (Fig. 6).

The longitudinal propagation constant kz for a Bessel wave can be found from equation
k2

0 = k2
z + k2

l as a function of distance z and azimuthal index l:

kz(z) �
√

k2
0 −

(
l

nr(z)

)2

, (1)

where k0 = ω0/c is the total wave vector, ω0 is the frequency, n is the index of refraction of the
material, kl is the transverse propagation constant, and r(z) is the radius.

The complex amplitude of a Bessel wave with azimuthal number l can be expressed as

f (r,z,φ , l) = A0(l,r)exp

⎡
⎣ j(φ + φ0(l))l + j

z∫
0

kz1(z1, l)dz1

⎤
⎦ (2)

at the distance z from the beginning of the fiber taper (we assume that the radius changes
adiabatically so that beams with different azimuthal numbers do not interact), where φ 0(l) and
A0(l,r) are the phase and amplitude of the wave at z = 0.

We assume that a group of Bessel beams with the azimuthal index distributed from l 0 to
l0 −Δl and the same frequency ω0 is created at the beginning of the fiber. The summation of all
the waves inside the dispersion interval Δl gives:

F(r,z,φ , l0,Δl) =
l0

∑
l=l0−Δl

f (r,z,φ , l) = (3)

l=l0

∑
l0−Δl

A0(l,r)exp

⎛
⎝ j(φ + φ0(l))l + j

z∫
0

√
k2

0 −
(

l
nr(z1)

)2

dz1

⎞
⎠ .

F(r,z,φ , l0,Δl) is the complex field distribution in the taper.
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Fig. 6. Azimuthal angle distribution of the real part of the optical field at different distances
from the fiber coupler. The angular width of the distribution is increasing monotonically
with the distance because of the different propagation constants of the Bessel waves sup-
ported by the waveguide and having different spacial distributions and the same frequency.

To obtain Fig. 6 we have considered a tapered optical fiber with refractive index n = 1.45, as
well as initial and final radii r0 = 0.3 mm and rn = 1 mm, respectively. We assumed that all the
waves initially have the same phase and amplitude (φ0(l) ≡ π and A0(l,r) ≡ 1). Fig. 6 picture
shows angular dependence of [(F(r,z,φ(mod(2π)), l0,Δl)+ c.c.)/2] for the given parameters
and l = 3000, Δl = 1000.

The helix-shaped far field interference pattern, easily seen in Fig. 3(A), is created by the
sum of all the waves at the exit of the taper. The length of the helical curve (the number of
loops in the interference pattern) directly depends on the phase distribution shown in Fig. 6.
For instance, if the taper is short enough, one will see the interference pattern as an unclosed
helix. This is the case for a taper shorter than zn = 3 mm with the other parameters as used in
the simulations resulting in Fig. 6. The pattern will have at least one loop for a longer taper
(see, e.g., Fig. 7).

The distribution of the far field interference pattern is determined by the Fresnel-Kirchhoff
diffraction integral

B(x,y) = C
∫
S

F(x′,y′)e−ik(xx′+yy′)/Hdx′dy′, (4)

where F(x,y) is given by Eq. (3) at the end of the taper crossection surface (here z, l and Δl
are constants), C is a constant, S is the aperture area, and H is the distance between the screen
and the aperture. A direct evaluation of the integral is complicated, but we can approximate this
integral by assuming that amplitudes of the particular Bessel waves (A 0(l,r)) are nonzero only
in a thin belt close to the circumference of the taper crossection. The radial thickness of the
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belt is approximately Δr = rn/l2/3, as for high order WGMs. Splitting the circumference of the
taper surface at small segments 1 � Δφ � λ/(2πΔr), we estimate the integral as

B(φ ,θ ) = C1

Δφ∫
0

F(r = rn −Δr/2,z = zn,φ + φ1, l0,Δl)e− jk0rφ1 sinθ k0rdφ1, (5)

where r = rn −Δr/2, C1 is a normalization parameter. To find the optimum step Δφopt we first
approximate the angle θ for the region of the localization of the interference pattern and take
Δφopt � λ/[2π(sinθ )Δr]. For sinθ ≈ 0.22 and Δr ≈ 4.3× 10−4 cm, which are the values for
our taper, we get Δφopt � 0.11. The result of the optimum step calculation is shown in Fig. 7.

Fig. 7. Numerical simulation of the interference pattern obtained for the Bessel beams
with l = 3000, Δl = 1000, wavelength λ = 650 nm, and zn = 20 mm (see text for the
explanation).

3.2. Propagation

Let us roughly estimate the propagation distance LB for the generated Bessel beams. Be-
cause the beams can be considered as a superposition of plane waves propagating at the angle
θ ≈ arcsin(kl(rn)/k0) to the surface of the crossection of the taper, the propagation distance
corresponds to LB = rn/arctg(θ ), where kl(rn) = kl(r0)r0/rn and at the very beginning of the
taper kl(r0) = k0. Now the equations for the beam divergence θ and beam propagation length
LB can be written as θ ≈ arcsin(r0/rn) and LB ≈ rn

2/r0, θ << 1. For parameters of our ex-
periment r0 = 0.5 mm, rn = 3 mm, and l = 7000 we get LB ≈ 18 mm. At this distance the
Bessel beam decays significantly, and its phase structure is very disturbed, though its momen-
tum is still preserved. Experimental data demonstrate a Bessel beam propagation length of the
same order. In order to get a distance of a meter, the exit radius of the taper should be at least
seven times larger. It is difficult to reproduce such a taper experimentally using our technique
of fabrication.

Let us study the divergence of a single truncated Bessel beam numerically to demonstrate the
nature of the beam decay. For the sake of simplicity of the computation we consider comparably
low order Bessel beams here. We take a tapered fiber with ending radius r n = 10 μm as a source
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of light. According to Huygens the complex field amplitude can be described by the diffraction
integral [11]

B(x,y,z) = C2

∫
S

f e jk0R

R
ds, (6)

where amplitude of optical field f = Jm(klr)e− jlφ , Jm(klr) is the Bessel function of m-th order,
C2 is a scale parameter, R is the distance between point in the plane of end of the fiber and the
point (x,y,z) where diffraction pattern is obtained.

In our case it is useful to employ cylindrical coordinates. The azimuth angle φ does not
contain information on the divergence because our system is symmetrical. We can exclude it
from the final consideration without any mathematical reduction. Now the diffraction integral
looks like:

B(r,z) = C2

r0∫
0

2π∫
0

Jm(klr′)
R

e− jlφ ′
e− jk0Rr′dφ ′dr′; R =

√
(r′ cosφ ′ − r)2 +(r′ sinφ ′)2 + z2 (7)

Please note that φ ′ coordinate appeared under integral. After selection of certain angle where the
optical field is to be calculated the function under the integral loose symmetry. This diffraction
integral was computed numerically for m = 17 and l = 30 as well as for m = 10 and l = 15.

Fig. (8) represents results of simulations of the field intensity |B(r,z)|2 in the plane which is
parallel to the fiber taper symmetry axis. The truncated Bessel beam does not change its shape
but has radiative loss. This is seen as a straight Bessel beam and group of conically diverged
beams in Fig. (8). Similar behavior was predicted for the zero-order Bessel-Gauss beam [10].

Fig. 8. Intensity pattern for the truncated Bessel beams leaving the fiber taper with 10 μm
radius. The ordinate axis coincides with the symmetry axis of the taper. The pictures cor-
respond to beams with numbers (A) m = 17 and l = 30, and (B) m = 10 and l = 15.

3.3. Shadow

We explain the shape of the shadow using principles of geometric optics. We assume that the
Bessel beams are significantly truncated, such that m � l −m and consider a one dimensional
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rod AA′ placed at the distance h from the fiber and H−h from the screen (Fig. 9). The surfaces
of the fiber crossection and the screen are parallel to the rod. The point A of the rod is illu-
minated by the plane wave leaving point S on the fiber rim. Point B is the shadow of point A.

Fig. 9. Formation of the shadow (inset) of a straight rod AA′ illuminated with a Bessel
beam.

Let us find angle γ (angle CFB), that determines the change of the position of the shadow
(B) with respect the straight projection (C) of point A of the rod. To do this we need to know
all the sides of triangle CFB.

Side CF is equal to the segment OD. The line segment SAB touches the surface of the fiber
so angle OSD is equal to 90o. Segment AD is equal to h. Segment OS is equal to rn. Angle
ADS is equal to 90o, and angle ASD is equal to α . Therefore

FC =

√
r2
n +

(
h

tgα

)2

. (8)

Following the same logic we find

FB =

√
r2
n +

(
H

tgα

)2

. (9)

To find segment CB we note that angle ACB is equal to 90o, and angle CBA is equal to α ,
hence

CB =
H −h
tgα

. (10)

Using the theorem of cosines we get

cosγ =
FC2 +FB2 −CB2

2FC ·FB
→ tgγ =

rn
H −h
tgα

r2
n +

Hh
(tgα)2

. (11)
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Angle α can be directly found from the formula tgα = k z(rn)/kl(rn). Finally, the distance from
the shadow point (B) to the direct projection of the rod AA ′ is equal to FBsinγ .

Let us now assume that we generated a lot of Bessel beams with different k z(rn)/kl(rn), as
is done in the experiment. Each Bessel beam projects a point of the rod to different places
of the screen. The complete shadow line is shown in the inset of Fig. (9). This result directly
resembles our experimental observations.

4. Conclusion

Using fused silica whispering gallery mode resonators we have demonstrated the generation
of optical beams with angular momentum exceeding a thousand. The beams propagate more
than a centimeter in the free space. Exactly the same approach would allow efficient generating
Bessel beams with momenta exceeding 105. Interference patterns of the multiple beams as well
as the peculiar shadow pictures created with the beams are demonstrated experimentally and
explained theoretically.
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